TABLE 3

Function	Exclusive cycle count C674x per biquad	Exclusive cycle count C66x per biquad	C66x/C674x Improvement	C674x bytes		Comments C674xx	Comments C66x
Cascade Biquad 1 Channel 2 stage	4.5	4	1.11x	268	416	Loop Carried Dependency Bound 8, Resource bound is 4	Loop Carried Dependency Bound 16, Resource bound is 7 Loop Unroll 2x
Cascade Biquad 2 channel 4- stage, same coefficient	2.125	1.375	1.35x	1128	904	Loop Carried Dependency Bound 8, Resource bound is 16	Loop Carried Dependency Bound 10, Resource bound is 8
Cascade Biquad 2 channel 3- stage, same coefficient	2	1.33	1.34x	536	656	Loop Carried Dependency Bound 10, Resource bound is 12	Loop Carried Dependency Bound 8, Resource bound is 7

TABLE 4

Cascaded Biquad	Exclusive cycle count C674x per biquad	Exclusive cycle count C66x per biquad	C66x/C674x Improvement		Comments C66x
1 Channel 2 stage Single Precision	4.5 4		1.11x	Loop Carried Dependency Bound 8, Resource bound is 4	Loop Carried Dependency Bound 16, Resource bound is 7 Loop Unroll 2x
1 Channel 2 stage, same coefficient, Mixed/Double Precision	9.75	4	2.4x	Loop Carried Dependency Bound 37, Resource Bound is 32 Loop Unroll 2x	Loop Carried Dependency Bound 10, Resource Bound is 10
1 Channel 3 stage, same coefficient, Mixed/Double Precision	15.33	3.33	4.6x	Loop Carried Dependency Bound 20, Resource Bound is 24	Loop Carried Dependency Bound 8, Resource Bound is 9
2 Channel 2 stage, same coefficient, Mixed/Double Precision	15.25	3.5	4.36x	Loop Carried Dependency Bound 17, Resource Bound is 32	Loop Carried Dependency Bound 7, Resource Bound is 14

What is claimed is:

1. A method of performing infinite impulse response filtering, the method comprising the steps of: computing the filter output by setting

out=in+d0

t1 = (b1 + a1)*in + d0

t0=a2*d0

d0=a1*d0

- d1=(b2+a2)*in+t0 where a1, a2, b1, b2 are coefficients and d0, d1, t0, t1 are intermediate results.
- 2. The method of claim 1, wherein:

the output is computed using a digital signal processor.

3. The method of claim 1, wherein:

the digital signal processor is a very long instruction word type of digital signal processor.

- 4. An apparatus for performing infinite impulse response filtering, the apparatus comprising:
 - a digital signal processor operable to compute the filter output by performing the following steps:

out=in+d0

t1 = (b1 + a1)*in + d0

t0=a2*d0

d0=a1*d0

d1=(b2+a2)*in+t0

- where a1, a2, b1, b2 are coefficients and d0, d1, t0, t1 are intermediate results.
- 5. The apparatus of claim 4, wherein:

the digital signal processor is a very long instruction word type of digital signal processor.